
Least-Square Fitting

September 7, 2017

In [1]: using PyPlot, Interact

1 Fitting a nonlinear-resistance model

In the previous lecture, we solved a circuit problem where the resistance R (= 1/Y where Y is admittance)
was nonlinear in the voltage difference d:

R = x1 + x2d
2.

One would normally get these coefficients x1 and x2 by experimental measurements. Such “fitting”
processes lead directly into the next major topic in 18.06:

1.1 Exact fits

Suppose we put two voltage differences d1 and d2 across our resistor, and measure two resistances R1 and
R2. This leads to the following 2× 2 system of equations for the unknown coefficients x1 and x2:(

x1 + x2d
2
1

x1 + x2d
2
2

)
=

(
1 d21
1 d22

)
︸ ︷︷ ︸

A

(
x1

x2

)
︸ ︷︷ ︸

x

=

(
R1

R2

)
︸ ︷︷ ︸

b

,

i.e. a system Ax = b. As long as |d1| 6= |d2|, the matrix A is non-singular, and this has a unique solution:
an interpolating polynomial going through the two data points:

In [2]: let fig = figure(), d = linspace(0,3,100)

@manipulate for d1=0:0.1:1, d2=1.1:0.1:2, R1=1:0.1:2, R2=1:0.1:2

withfig(fig) do

x = [1 d1^2; 1 d2^2] \ [R1, R2]

plot([d1, d2], [R1, R2], "ro")

plot(d, x[1] + x[2]*d.^2, "k-")

xlim(0,3)

ylim(0,3)

title("fit \$x\$ = $x")

xlabel(L"d")

ylabel(L"R")

end

end

end

Interact.Options{:SelectionSlider,Float64}(Signal{Float64}(0.5, nactions=1),"d1",0.5,"0.5",Interact.OptionDict(DataStructures.OrderedDict("0.0"=>0.0,"0.1"=>0.1,"0.2"=>0.2,"0.3"=>0.3,"0.4"=>0.4,"0.5"=>0.5,"0.6"=>0.6,"0.7"=>0.7,"0.8"=>0.8,"0.9"=>0.9...),Dict(0.6=>"0.6",0.3=>"0.3",0.7=>"0.7",0.0=>"0.0",0.2=>"0.2",0.9=>"0.9",0.8=>"0.8",0.5=>"0.5",0.1=>"0.1",0.4=>"0.4"...)),Any[],Any[],true,"horizontal")

Interact.Options{:SelectionSlider,Float64}(Signal{Float64}(1.5, nactions=1),"d2",1.5,"1.5",Interact.OptionDict(DataStructures.OrderedDict("1.1"=>1.1,"1.2"=>1.2,"1.3"=>1.3,"1.4"=>1.4,"1.5"=>1.5,"1.6"=>1.6,"1.7"=>1.7,"1.8"=>1.8,"1.9"=>1.9,"2.0"=>2.0...),Dict(1.2=>"1.2",1.1=>"1.1",2.0=>"2.0",1.3=>"1.3",1.5=>"1.5",1.6=>"1.6",1.8=>"1.8",1.9=>"1.9",1.7=>"1.7",1.4=>"1.4"...)),Any[],Any[],true,"horizontal")

1

Interact.Options{:SelectionSlider,Float64}(Signal{Float64}(1.5, nactions=1),"R1",1.5,"1.5",Interact.OptionDict(DataStructures.OrderedDict("1.0"=>1.0,"1.1"=>1.1,"1.2"=>1.2,"1.3"=>1.3,"1.4"=>1.4,"1.5"=>1.5,"1.6"=>1.6,"1.7"=>1.7,"1.8"=>1.8,"1.9"=>1.9...),Dict(1.2=>"1.2",2.0=>"2.0",1.5=>"1.5",1.4=>"1.4",1.6=>"1.6",1.9=>"1.9",1.1=>"1.1",1.3=>"1.3",1.8=>"1.8",1.7=>"1.7"...)),Any[],Any[],true,"horizontal")

Interact.Options{:SelectionSlider,Float64}(Signal{Float64}(1.5, nactions=1),"R2",1.5,"1.5",Interact.OptionDict(DataStructures.OrderedDict("1.0"=>1.0,"1.1"=>1.1,"1.2"=>1.2,"1.3"=>1.3,"1.4"=>1.4,"1.5"=>1.5,"1.6"=>1.6,"1.7"=>1.7,"1.8"=>1.8,"1.9"=>1.9...),Dict(1.2=>"1.2",2.0=>"2.0",1.5=>"1.5",1.4=>"1.4",1.6=>"1.6",1.9=>"1.9",1.1=>"1.1",1.3=>"1.3",1.8=>"1.8",1.7=>"1.7"...)),Any[],Any[],true,"horizontal")

Out[2]:

In general, if you have m points you can interpolate them in this way by a degree m − 1 polynomial
(called the Lagrange interpolating polynomial) in this way: you set up an m × m matrix system for the
coefficients.

Note, however, that this is neither the most efficient nor the most accurate (given roundoff errors)
method to compute an exact interpolating polynomial. There is a much better method called barycentric
interpolation that is outside the scope of 18.06.

1.2 Inexact fits

Suppose we do more than just the bare minimum number of measurements, however. Suppose that we do
m > 2 measurements. This gives the following system of equations:

1 d21
1 d22
...

...
1 d2m


︸ ︷︷ ︸

A

(
x1

x2

)
︸ ︷︷ ︸

x

=


R1

R2

...
Rm


︸ ︷︷ ︸

b

,

2

https://en.wikipedia.org/wiki/Lagrange_polynomial
https://people.maths.ox.ac.uk/trefethen/barycentric.pdf
https://people.maths.ox.ac.uk/trefethen/barycentric.pdf

Now, A is m× 2, and full column rank (assuming distinct voltages |dk|), but of course it is not invertible
for m > 2.

It will still have a solution (a unique solution!) if all of the Rk measurements fall exactly on a quadratic
curve x1 + x2d

2, but in a real experiment there would be some measurement noise that would spoil this.
For example, let’s suppose x = (1, 2) and we do m = 200 measurements for d ∈ [0, 2], but that each

measurement has a random uncertainty ≈ R± 0.1.

In [3]: d = linspace(0,2,200) # 20 points from 1 to 4

b = 1 + 2*d.^2 + randn(200)*0.1 # measurements with Gaussian random noise

plot(d, b, "r.")

xlabel(L"d")

ylabel(L"R")

title("noisy \"measurements\" of \$R = 1 + d^2\$")

Out[3]: PyObject <matplotlib.text.Text object at 0x322d77190>

The corresponding matrix A is:

In [4]: A = [ones(d) d.^2]

rank(A)

Out[4]: 2

A doesn’t have an inverse, of course:

3

In [5]: inv(A)

DimensionMismatch("matrix is not square")

in checksquare(::Array{Float64,2}) at ./linalg/linalg.jl:196

in Type at ./linalg/triangular.jl:16 [inlined]

in inv(::Array{Float64,2}) at ./linalg/dense.jl:362

However, if we blindly do A \ b, it seems to give us quite a reasonable x, very close to the exact x = (1, 2)
of the underlying data:

In [6]: x^ = A \ b

Out[6]: 2-element Array{Float64,1}:
1.01149

1.98881

What is it doing? Let’s plot the curve from the coefficients A \ b:

In [7]: d = linspace(0,2,200) # 20 points from 1 to 4

b = 1 + 2*d.^2 + randn(200)*0.1 # measurements with Gaussian random noise

plot(d, b, "r.")

plot(d, x^[1] + x^[2] * d.^2, "k-")

xlabel(L"d")

ylabel(L"R")

title("Fit A\\b to noisy \"measurements\" of \$R = 1 + d^2\$")

4

Out[7]: PyObject <matplotlib.text.Text object at 0x3263b2890>

In [8]: norm(b - A*x^) # the length of the "residual" b - Ax^ is not zero!

Out[8]: 1.4337209889149145

This x̂ is not an exact solution: Ax̂ 6= b: the “residual” (the “error”) b − Ax̂ is not zero, as we can see
by checking its norm ‖b−Ax̂‖ above.

In the plot above, correspondingly, the black “fit” curve does not exactly match the data points. But it
is pretty close!

2 Least-square fits

What A \ b is doing in Julia, for a non-square “tall” matrix A as above, is computing a least-square fit
that minimizes the sum of the square of the errors. This is an extremely important thing to do in
many areas of linear algebra, statistics, engineering, science, finance, etcetera.

Above, we have a bunch of measurements (dk, Rk), and we are trying to fit it to a function R(x, d) =
x1 + x2d

2. There is no exact fit, so instead we minimize the sum of the squares of the errors:

min
x∈R2

m∑
k=1

(Rk −R(x, dk))2 .

5

Let’s write this in terms of linear-algebra operations. We have our m× 2 matrix A above, and in terms
of this we have R(x, dk) = (Ax)k: the “fit” function at dk is the k-th row of Ax. But then Rk −R(x, dk) is
the k-th row of the residual vector

residual = b−Ax

and we can see that our sum above is precisely the sum of the squares of the residual components,
which is the square of the length of the residual:

m∑
k=1

(Rk −R(x, dk))2 = ‖b−Ax‖2 .

Here, ‖y‖ =
√
yT y is the length of a vector, also called the norm of the vector: the square root of the

dot product with itself. (More specifically, this is the Euclidean norm, also called the L2 norm. There are
other ways to define a vector norm, but I think this is the only one we will use in 18.06.)

So, what we are really doing is minimizing the norm of the residual:

min
x∈R2

‖b−Ax‖

(Note that minimizing the norm and minimizing the squared norm will give the same solution x; which
one we write is a matter of convenience.)

This is exactly what A \ x does in Julia (and Matlab) for a non-square matrix A, which is why it gives
us a good fit above.

2.1 Least-squares fits and the normal equations

As derived in section 4.3 of the Strang textbook, minimizing ‖b− Ax‖ or (equivalently) ‖b− Ax‖2 leads to
the so-called “normal equations” for the minimizer x̂:

ATAx̂ = AT b

These always have a solution. If A is an m× n matrix, then ATA is n× n, and:

• Usually in fitting problems, A is a “tall” matrix with full column rank n, in which case rank(ATA) =
rank(A) = n and ATA is invertible: the solution x̂ exists and is unique.

• Even if rank(A) < n, we still have a (non-unique) solution, because AT b ∈ C(AT) = N(A)⊥ =
N(ATA)⊥ = C(ATA).

Now (on the blackboard), I will show that we can derive the normal equations directly by 18.02. If we just
take the partial derivatives of f(x) = ‖b−Ax‖2 and set them to zero, we find that 0 = ∇xf = 2ATAx−2AT b
and the normal equations follow.

3 More polynomial fitting examples.

Suppose we are fitting m points (ak, bk) to a degree-(n+1) polynomial of the form

p(a) = x1 + x2a + x3a
2 + · · ·+ xna

n−1 ,

which leads to the m× n matrix

A =


1 a1 a21 · · · an−11

1 a2 a22 · · · an−12

1 a3 a23 · · · an−13
...

...
...

...
1 am a2m · · · an−1m


6

https://en.wikipedia.org/wiki/Euclidean_distance

and hence to the normal equations for the fit coefficients x̂.
Let’s generate 50 data points from a degree-3 polynomial 1 + 2a + 3a2 + 4a3 plus noise, and see what

happens as we change the fitting degree n.

In [9]: let a = linspace(0,1.5,50),

afine = linspace(0,1.5,1000),

b = 1 + 2a + 3a.^2 + 4a.^3 + randn(length(a)),

fig = figure()

@manipulate for n=slider(1:40, value=2)

withfig(fig) do

plot(a, b, "r.")

A = a .^ (0:n-1)’

x^ = A \ b

plot(afine, (afine .^ (0:n-1)’) * x^, "k-")

xlabel(L"a")

ylabel(L"b")

xlim(0,1.6)

ylim(-5,30)

title("noisy cubic: least-square fit of degree $(n-1)")

end

end

end

Interact.Slider{Int64}(Signal{Int64}(2, nactions=1),"",2,1:40,"horizontal",true,"d",true)

Out[9]:

7

Increasing the degree of the fit at first seems to improve things, up to about degree 6, but then it becomes
more and more wiggly. It is still reducing the residual, but clearly it is “fitting noise” and the error actually
becomes worse compared to the “real” underlying cubic model. This problem is called overfitting.

In between the fitted points, especially near the edges, the wiggles can actually diverge as we increase
the degree, an effect related to what is known as a Runge phenomenon. Even if there is no noise, fitting
equally spaced points to high-degree polynomials can lead to disaster if the underlying data is not exactly
polynomial. Let’s demonstrate this by fitting the smooth function b(a) = 1/(1 + 25a2) to polynomials at 50
points:

In [10]: let a = linspace(-1,1,50),

afine = linspace(-1,1,1000),

b = 1 ./ (1 + 25 * a.^2),

fig = figure()

@manipulate for n=slider(1:50, value=3)

withfig(fig) do

plot(a, b, "r.")

A = a .^ (0:n-1)’

x^ = A \ b

plot(afine, (afine .^ (0:n-1)’) * x^, "k-")

xlabel(L"a")

ylabel(L"b")

xlim(-1,1)

ylim(0,1)

title("smooth function: polynomial fit of degree $(n-1)")

end

end

end

Interact.Slider{Int64}(Signal{Int64}(3, nactions=1),"",3,1:50,"horizontal",true,"d",true)

Out[10]:

8

https://en.wikipedia.org/wiki/Overfitting
https://en.wikipedia.org/wiki/Runge's_phenomenon

Be careful not to draw the wrong lesson from this. You have to be especially careful when fitting to
high-degree polynomials, but this does not mean that you should never do it.

In particular, fitting smooth functions to high-degree polynomials can be a great thing to do, as long as
you choose the correct points.

For example, here we fit the same 1/(1 + 25a2) function as above to a degree-50 polynomial, with no
problems at all, by choosing the points to be Chebyshev nodes (which cluster together at the edges of the
domain):

In [11]: n = 51

a = cos(((1:n)-0.5) * pi/n) # = Chebyshev nodes of order n

afine = linspace(-1,1,1000)

b = 1 ./ (1 + 25 * a.^2)

plot(a, b, "r.")

A = a .^ (0:n-1)’

x^ = A \ b

plot(afine, (afine .^ (0:n-1)’) * x^, "k-")

xlabel(L"a")

ylabel(L"b")

xlim(-1,1)

ylim(0,1)

title("smooth function: Chebyshev polynomial interpolation of degree $(n-1)")

9

https://en.wikipedia.org/wiki/Chebyshev_nodes

Out[11]: PyObject <matplotlib.text.Text object at 0x3283dd850>

How this works goes far outside the bounds of 18.06, but is beautiful and fascinating mathematics. See,
for example, this book and these video lectures by Nick Trefethen.

The great thing about fitting complicated functions to polynomials is that polynomials are usually easier
to work with — finding roots, derivatives, and integrals of polynomials is easy, for example. A pioneering
software package encapsulating this idea is chebfun, and a Julia implementation of similar ideas is ApproxFun.

10

https://people.maths.ox.ac.uk/trefethen/ATAP/
https://people.maths.ox.ac.uk/trefethen/atapvideos.html
https://people.maths.ox.ac.uk/trefethen/
http://www.chebfun.org/
https://github.com/JuliaApproximation/ApproxFun.jl

